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We present a Monte Carlo finite-size scaling analysis of the Pink model with the fitted parame-
ters appropriate for dipalmitoyl phosphatidylcholine and disteroyl phosphatidylcholine lipid-bilayer
systems. The numerical simulations were performed in conjunction with the extrapolation method
of Ferrenberg and Swendsen [Phys. Rev. Lett. 61, 2635 (1988)] and the finite-size scaling method
of Lee and Kosterlitz [Phys. Rev. Lett. 65, 137 (1990)]. In contrast to previous work, we found
that there is no first-order phase transition and that the abrupt jump in the order parameter and
the enhancement of the response functions found by previous numerical simulations are due to the
presence of strong lateral density fluctuations which give rise to a large correlation length.

PACS number(s): 87.22.Bt, 64.60.Cn

I. INTRODUCTION

Fully hydrated lipid bilayers have been the subject of
both experimental and theoretical studies due to their
role as models for biological membranes [1]. Furthermore,
a study of their phase behavior leads to an understanding
of the fundamental interactions between membrane com-
ponents. Here we concentrate on the main phase tran-
sition of pure lipid bilayers, in which the system passes
from a gel (quasi-two-dimensional solid) phase to a lig-
uid crystalline (quasi-two-dimensional fluid) phase. This
transition has been characterized experimentally by the
occurrence of a sharp peak in the specific heat and by
abrupt changes in the order parameter which describes
the acyl chain conformations in each phase. This tran-
sition is usually considered as a sharp first-order phase
transition with a latent heat which depends on the chain
length of the lipid molecules [1]. However, a recent in-
terpretation of experimental thermodynamic data for the
main phase transition by Biltonen [2] leads to the conclu-
sion that this transition is not a phase transition. The-
oretical work by Ipsen, Jgrgensen, and Mouritsen [3] on
the Pink model [4] predicts the occurrence of strong lat-
eral density fluctuations in the neighborhood of the main
phase transition and the concomitant scaling behavior
suggests that the main phase transition could be weakly
first order close to a critical point. In this paper we use
numerical simulations in conjunction with powerful new
finite size scaling methods to show that that there is no
phase transition in the thermodynamic limit for the Pink
model with the parameters used in [3].

Two-dimensional interacting lattice models are ex-
tremely useful tools for the study of critical behavior,
particularly in conjunction with modern computer simu-
lation techniques. One such model, the multistate Pink
‘model, has proved extremely useful in the study of the
main phase transition of pure lipid bilayers [4] and its
extensions have been used to examine the phase behav-
ior of lipid-protein mixtures, lipid-cholesterol mixtures,

47

and lipid bilayers containing foreign molecules [5]. It
was first analyzed in the mean-field approximation from
which the parameters of the model were found for satu-
rated lecithin bilayers by fitting to the available thermo-
dynamic data [4]. This analysis led to the prediction of
sharp first-order phase transitions for saturated lecithin
bilayers with acyl chain lengths from 12 to 22 carbons
per chain and the results were used to understand data
from Raman spectra for dipalmitoyl phosphatidylcholine
(DPPC), which is a saturated lecithin with 16 carbons
per chain. Note that lecithins are lipid molecules with
two acyl chains connected to each other and to a PC
zwitterionic (dipolar) polar head via a glycerol backbone.
Mouritsen et al. [6] performed numerical simulations for
the Pink model with the fitted parameters found for
DPPC using the Metropolis Monte Carlo method. They
found abrupt but continuous changes in physical quan-
tities such as the internal energy and the cross-sectional
area per lipid chain at the transition. Sharp peaks at
T, were observed in the response functions (specific heat
and lateral compressibility) of the system at a tempera-
ture T,,, which was taken to be the transition tempera-
ture of the main phase transition. Furthermore, the re-
sponse function data predicted the occurrence of strong
lateral density fluctuations away from the transition re-
gion, which decreased in strength as a function of in-
creasing chain length, resulting in a sharpening of the
transition. Mouritsen [7] and later Ipsen, Jgrgensen, and
Mouritsen [3] showed that these fluctuations give rise to
the appearance of fluctuating clusters of the minority
phase in the majority phase in the region of T,,. The
interfaces between the clusters and the bulk were consid-
ered as packing faults and this led to a novel interpreta-
tion for the behavior of the passive ionic permeability of
pure lipid bilayers at T, [8, 9].

The question therefore arises: what is the nature of
the phase transition predicted by the Monte Carlo results
for the Pink model with the fitted parameters appropri-
ate for saturated lecithin bilayers? No detailed analysis
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of this question has as yet been made, even though it
was thought that the system was close to a critical point.
Such an analysis is undertaken in this paper. In an ear-
lier paper, Ipsen, Jgrgensen, and Mouritsen [3] suggested
that the pseudocritical behavior of the system could well
be indicative of a weak first-order phase transition close
to a critical point. In this paper, we use recently devel-
oped numerical methods due to Ferrenberg and Swend-
sen [10] and Lee and Kosterlitz [11] to examine the nature
of this transition. By using finite-size scaling analysis, we
find that, contrary to what was previously thought, the
transition observed for the Pink model with the fitted
parameters in numerical simulations is not a phase tran-
sition. Furthermore, this conclusion applies to lecithin
bilayers with chain lengths of up to 18 carbon atoms.
Section II gives a brief but reasonably detailed descrip-
tion of the Pink model. In particular the role of the in-
termediate conformational states is discussed in terms of
interfacial activity at the cluster boundaries. The meth-
ods of Lee and Kosterlitz, and Ferrenberg and Swendsen
are described in Sec. III together with the manner in
which they can be applied to the Pink model. The finite-
size scaling results for the Pink model are presented and
discussed in Sec. IV. Section V concludes the paper and
contains a discussion on the nature of the transition.

II. THE PINK MODEL

The Pink model [4, 12] is a multistate lattice model
which is based on the assumption that the two monolay-
ers forming the lipid bilayer do not interact and that
the two acyl chains forming a lipid molecule can be
treated independently. Each monolayer is modeled by
a two-dimensional triangular lattice with a saturated
lipid chain in one of several different conformational
states at each of its sites. The parameters characterizing
these states are obtained by examining the rotational iso-
merism of lipids chains in three dimensions. Therefore,
even though the model is two dimensional, it contains
information relating to three dimensions.

In the Pink model, the continuous rotational spectrum
for each saturated carbon-carbon (C—C) bond is replaced
by the three conformational states at the energy minima
which correspond to one trans and two gauche bonds.
There are ten different conformational states for the lipid
chains in the Pink model, which were selected as follows
on the basis of steric compatibility in the monolayer. The
ground state of the chain is taken to be the conformation
for which all the C-C bonds are trans bonds. The eight
intermediate energy states are low-energy excitations of
the all-trans configuration and are selected according to
the following rules: the first two chain segments are kept
fixed in a trans configuration, the chains have at most
three gauche bonds, the length of the chains is at most
three units shorter than that of the all-trans configura-
tion, and the chains do not fold back upon themselves.
All lipid chain conformations with the same energy and
the same length are considered to be in the same con-
formational state. The tenth state is a high-energy state
characteristic of the liquid crystalline or fluid phase and

is a combination of many disordered states.

An important limitation of the Pink model is that the
problem of chain packing in each monolayer of the bi-
layer has not been correctly addressed. Rather the chain
conformations on neighboring sites are treated indepen-
dently in a mean-field manner and are therefore uncor-
related from the point of view of chain packing. This
problem has been addressed by several authors [13], who
explicitly incorporate the statistics of the acyl chains in
the analysis of phase transitions in Langmuir monolayers
using a mean-field approach.

The original supposition [4] was that the low-energy
intermediate states can be present in the gel phase and
this allowed an interpretation of the Raman data for
DPPC. However, Mouritsen [7] found that the intermedi-
ate states were also present in the interfaces between the
clusters of different phases close to T,,. Cruzeiro-Hansen
and Mouritsen [8] interpreted these states as packing de-
fects at the cluster boundaries and based their theory
of the ionic permeability close to T,, on this interpre-
tation. The intermediate states have another important
role in the phase behavior of the system. They stabilize
the clusters by reducing the interfacial tension at their
boundaries [5]. This can be considered as a “surfactant
like” action which has a considerable influence on the
nature of the transition at Tr,.

Implementation of the Pink model requires a knowl-
edge of the internal energy, the cross-sectional area,
and the degeneracy associated with each conformational
state. The internal energy of the all-trans state is taken as
the reference energy and therefore this state has zero in-
ternal energy, its cross-sectional area is determined from
experimental data [14] as A; = 20.4 A2, and it is non-
degenerate. The internal energies of the intermediate
states are determined by the number of gauche bonds,
the energy required to form a gauche bond from a trans
configuration being E;, = 0.45 x 10713 erg. The cross-
sectional areas are obtained from the assumption that
the volume of the chain remains constant [15, 16]. The
degeneracies are obtained by counting the number of pos-
sible configurations with the same energy and the same
length. Table I gives a summary of the properties of the
ground and intermediate conformational states. For the
high-energy state, the cross-sectional area is assumed to
be independent of chain length and is set to A9 = 34
A2, The degeneracy is assumed to be proportional to
3™, where m is the number of carbon atoms forming
the chain and is given by Djp = 6 x 3™~6. The en-
ergy is taken to be linear in chain length and is given by
Ej0 = (0.42m — 3.94) x 10713 erg.

Nearest-neighbor acyl chains are assumed to interact
via anisotropic van der Waals interactions which are
products of the isotropic interaction between two long
parallel chains as calculated by Salem [17] and an ori-
entational interaction between individual C-C bonds.
The total anisotropic interaction between two neighbor-
ing chains in states o and 3 is

Hint = _JOVaﬁSaSﬁy (1)

where Jy is an interaction constant that depends on the
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TABLE 1. Energies, lengths and degeneracies of the
ground and the intermediate states.

State 1 State 2 State 3
E=0 E=E, E =E,
L=m-1 L=m-2 L=m-3
D=1 D=4 D=4

State 4 State 5 State 6
E=E, E =2E, E =2E,
L=m-—4 L=m-2 L=m-3
D=4 D = 2(m — 6) D =2(m — 8)
State 7 State 8 State 9

E =2E, E =3F, E =3E,
L=m-4 L=m-3 L=m-4
D =2(m - 10) D = 8(m — 8) = 16(m — 10)

number of C-C bonds. S, and Sg are the nematic acyl
chain order parameters for the two molecules and are
given by

8 1 sy 3c0s20,n — 1
Sa= B3 ) 2)

(m—1) = 2

where the summation is over all chain segments and 6, is
the angle between the nth chain segment and the bilayer
normal. Vs can be written in terms of the cross sectional
areas as

A N5/ 4\ /4
o (B @) o

This form of the interaction is not valid for the tenth
state because the chains are far from being parallel to
each other. A weakening factor is therefore introduced
such that Vi = w(z’i‘%)s 4 [6].

A geometrical relationship between the nematic order
parameter and the chain length was derived by Seelig
and Seelig [18]. This relationship together with the as-
sumption of constant volume allows us to write the inter-
action Hamiltonian in terms of the cross-sectional areas
Ag (B=1,2,...,10).

Repulsive forces due to electrostatic interactions be-
tween the polar head groups and steric interactions from
both the polar head groups and the lipid chains are taken
into account in an approximate manner by the inclusion
of an energy proportional to the total area in the Hamil-
tonian [4,12,16]. The constant of proportionality can be
regarded as an effective lateral pressure II.

The Hamiltonian for the Pink model is given by

H = ZZE Lai— = J" ST Lalslails;

<i,7> a,B

+II Z Z Aa‘ca,ia (4)

Prn(U,A) exp[—(ﬁﬁ - %7317)

(kBT’ -

where the first term is the single chain contribution, the
second term represents the van der Waals interaction be-
tween lipid chains, and the third term accounts approx-
imately for steric interactions and interactions between
polar heads. The indices 7 and j refer to lattice sites and
the indices o and 3 refer to conformational states. Lq,;
is an occupation variable which is defined as

1 if the state of the lipid at site i is &
Ea i =

’

0 otherwise.

Q)

I, is defined as I, = woV,Sy. I, can be written in terms
of the areas as follows:

O (9Ar 4\ [ A\
’w“’a(gz‘g)(z;) ! (©)

where w, = 1 for states 1 to 9 and wyg = 0.4.

III. COMPUTATIONAL METHODS

The model Hamiltonian of Eq. (4) can be rewritten as
a sum of two terms: a term comprising both the internal
energy of the chains and the interaction term and a term
proportional to the effective lateral pressure II:

H=U+1IA, ()
where the first term is given by
J
B ILYNEL D 3 AN IINC
<%,5> a,p

Here A is the total area of the system
A= "AuLo (9)
[3 o3

The probability cf finding the system at a point (U, A) in
phase space at temperature T' and effective lateral pres-
sure IT is

N(U, A) exp(—%f;HTA)

PT,H(U7 A) = Z(T, ) )

(10)

where N (U, A) is the total number of states at these val-
ues of U and A and Z(T,II) is the partition function,
ie.,

(11)

U+TIA
Z(T,I) = Y N(U, A)exp <————-) .
UaA kT

Ferrenberg and Swendsen [10] show that the probabil-
ity distribution at any temperature 7” and lateral pres-
sure IT’ can be written exactly in terms of the probability
distribution at 7" and II as follows:

)4l

Pr (U, A) =

ZU,A PT,H(Ua A) exp[_(kBlT’ kBT)

(12)

(kBT’ - kBLT)A] .
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This equation shows that it is sufficient to know the prob-
ability distribution at a temperature T" and a lateral pres-
sure II in order to find the probability distribution at a
neighboring temperature and pressure. This allows us
to calculate averaged quantities such as the internal en-
ergy and area and their fluctuations at (77,II') from a
knowledge of the probability distribution at (T',II).

This method is implemented numerically by calculat-
ing the two-dimensional histogram of U and A, which
is proportional to the probability distribution given in
Eq. (10). This method was used successfully for several
models such as the Ising model [10], the Potts model [10,
11], the ®* model [19], and more recently a lattice-gas
model for ternary water-oil-surfactant systems [20].

The method has, however, several numerical limita-
tions. Consider, for example, the equilibrium probability
distribution given by a Gaussian centered at the equilib-
rium energy density €y [21, 22],

¢ \V? (e — €0)2 L4
Pr(e) = (27rkBT20> xp (' 2%k5T2C >
(13)

where ¢ is the energy density, L is the linear system size,
d is the spatial dimension, and C is the specific heat. We
know that, far away from phase transitions, the specific
heat is finite and independent of the size of the system.
Therefore the width of the probability distribution, which
is proportional to C/L%, narrows as L increases and be-
comes a 6 function in the thermodynamic limit. This
implies that the width of the energy spectrum decreases
as L~¢ and therefore the extrapolation becomes more dif-
ficult as L increases. Near a continuous phase transition
C ~ L%/¥, where a and v are the usual critical expo-
nents 525]. The width of the distribution then decreases
as L=%2/¥ implying that the distribution will sharpen,
but at a slower rate. It is worth noting that in most two-
dimensional systems « is small (a ~ 0) [25], implying
that extrapolation to other parameters will still be diffi-
cult. This clearly shows that the best extrapolations are
those with a starting point at which the system exhibits
strong fluctuations, particularly for small systems where
the distribution is sufficiently wide.

In second-order phase transitions, the divergences in
the specific heat and the compressibility are linked to the
divergence in the correlation length. First-order transi-
tion are, on the other hand, characterized by discontinu-
ities in the first derivatives of the free energy such as the
energy and the area. This leads to singularities in the
specific heat and the compressibility. The divergences
and singularities are only observed in the thermodynamic
limit. For example, in finite systems, the phase transi-
tions are smeared out, leading to ambiguities in distin-
guishing first order from second order in numerical sim-
ulations. Even the occurrence of hysteresis is not always
an indication that the transition is first order. Indeed,
critical slowing down might lead to hysteresis. Therefore,
in order to distinguish first-order transitions unambigu-
ously from second-order ones, it is necessary to perform a
finite-size scaling analysis. In a second-order transition,
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the smearing out of the transition is due to the fact that
the correlation length £ is now limited by the system size
L. Finite-size scaling theory shows that the specific heat
and the compressibility diverge as L®/” and L/, respec-
tively, at T.. At a first-order phase transition, starting
from the assumption that the probability distribution is
a double Gaussian, it can be shown that both the specific
heat and the compressibility scale as L¢, which is usually
observed when the system size L is much larger than the
correlation length. However, the correlation length might
sometimes be very large at first-order transitions. In this
case it becomes somewhat ambiguous to determine the
type of the transition from simulations on finite systems.
Lee and Kosterlitz [11] recently proposed a numerical
finite-size scaling method which is able to discard a first-
order transition even for small system sizes. This method
consists of calculating the free energy as a function of
energy or average area per lipid chain at the presumed
transition point and then investigating how it scales with
system size. To illustrate the method, let us suppose that
our system is at a first-order transition. The lowest free
energy then corresponds to the case when the system is
in one of the two coexisting phases. The probability of
occurrence of either of these phases is given by

Lfp(T, H)) ,

T (14)

PEF o exp (—
where fp is the free energy per unit volume. The phases
can also coexist when separated by an interface. This
state has a lower probability due to the cost of the inter-
facial free energy. The corresponding probability can be
written as

Léfp(T,1T) + L1 f5(T, D) + O(Ld”z))

PPIR o exp <— ——
B

(15)

where fg is the interfacial free energy density and is
a positive quantity. Therefore the free energy differ-
ence between the state where the system consists only
of one phase and the state consisting of the two coexist-
ing phases is given by

max
AF = —kpTln (P ) .

Pmin

(16)

This gives the total interfacial free-energy L9~1fs +
O(L4%?), which increases with system size.

When there is no transition, it is quite possible that
the free energy has a double minimum for system sizes
smaller than the correlation length. However, as the sys-
tem size is increased, the energy barrier decreases and
the double well changes to a single well when the system
size L is comparable to the correlation length. It is there-
fore concluded that for a first-order phase transition, the
energy barrier of the double well increases with the sys-
tem size, for a second-order phase transition it remains
constant and if there is no phase transition, the energy
barrier decreases with increasing the system size [11].
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IV. RESULTS AND DISCUSSION

In this section we use the finite-size scaling analysis of
Sec. III to examine the nature of the main phase tran-
sition as predicted by the Pink model for both DPPC
and disteroyl phosphatidylcholine (DSPC, 18 carbons per
chain) bilayers. The interaction constant Jo depends on
the chain length and is fitted for both systems in or-
der to reproduce the experimental transition tempera-
tures [23]. Table II gives the experimental transition tem-
peratures [24] and the values of the interaction constant
for the two systems studied. The value used for II is 30
dyn/cm [4].

To this purpose, spin—flip Metropolis Monte Carlo sim-
ulations were performed on L x L triangular lattices for
linear sizes from L = 4 to 50. In order to obtain good
statistics, simulations were run for at least 320 000 Monte
Carlo steps on each system size. The application of the
Monte Carlo method to the Pink model has been de-
scribed elsewhere [26]. Monte Carlo simulations were
performed close to the experimental transition temper-
ature and the method of Ferrenberg and Swendsen [10]
was used to extrapolate to neighboring temperatures. We
checked that the extrapolations were in good agreement
with the direct Monte Carlo simulations of Corvera [27]
by comparing quantities such as the internal energy, the
specific heat, the area per lipid molecule, and the lateral
compressibility calculated using standard Monte Carlo
methods at different temperatures.

In order to apply the Lee-Kosterlitz method [11] we
calculated the free energy as a function of area per lipid
molecule. Figure 1 shows the free energy for DPPC bi-
layers as a function of area for three of the system sizes
studied. For L = 6, the free energy exhibits two well-
defined wells at areas A; and Aj, corresponding to the
gel and fluid phases. However, when L increases, the free-
energy barrier which separates these two states becomes
smaller as shown for L = 10, implying that configurations
in the region between A; and A, become more accessible
as the system size increases. In other words, there is a
lower cost in interfacial free energy for the coexistence
of the two phases for larger systems. The barrier almost
disappears for L = 16 and the double-well structure is
no longer observed for L = 24. Only a single well is
observed for larger system sizes. This leads to the con-
clusion that there is no first-order phase transition for the
Pink model with the fitted parameters corresponding to
DPPC bilayers.

We also conclude that the correlation length £ is quite
large, since the double-well structure disapears for a sys-
tem of L = 24. Further, we calculated the specific heat
corresponding to DPPC bilayers as a function of tem-

perature for various system sizes. Figure 2 shows the

TABLE II. Experimental transition temperatures and in-
teraction constants.

Ty (K) Jo (10712 erg)
DPPC 314.0 0.7099
DSPC 327.9 0.815
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L =10,T=314.2 K, and (c) L =16, T = 314.1 K.
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FIG. 2. Maximum of the specific heat as a function of the

system size corresponding to DPPC bilayers with a lateral
pressure of IT = 30 dyn/cm.

maximum of the specific heat as a function of the system
size. The maximum of the peak increases with increasing
system size for small L but begins to saturate at about
L = 24. This behavior is consistent with the above find-
ings that there is no phase transition at these system
parameters. Therefore the presence of strong peaks in
the response functions does not necessarily indicate the
existence of any phase transition. Such peaks can be due
to a large correlation length, as is the case when the sys-
tem is close to a critical point. Indeed, similar behavior is
observed in the Ising model for T slightly larger than T,
where the specific heat and the susceptibility as a func-
tion of magnetic field exhibit a peak around zero field. It
is important to note that a large correlation length does
not necessarily imply that the system is close to a critical
point.

The Monte Carlo calculations of Ipsen, Jgrgensen, and
Mouritsen [3] show that the changes in internal energy,
area per lipid molecule, and order parameter are more
abrupt for DSPC bilayers at T, than for DPPC bilayers.
However, we find that there is again no first-order phase
transition for the case of DSPC. As in the case of DPPC
bilayers, the free-energy barrier which is large for small
system sizes again decreases as L increases as is shown in
Fig. 3 and then disappears at approximately L = 50. We
therefore conclude that there is no phase transition for
the Pink model with the fitted parameters corresponding
to DSPC bilayers. Furthermore, since the energy barrier
disappears at L = 50, the correlation length for DSPC
is larger than for DPPC. Monte Carlo simulations were
again performed at slightly lower pressures and the same
behavior was observed.

The role of the intermediate states in preventing the
occurrence of a first-order phase transition predicted by
mean-field theory for DPPC and DSPC can be thought
of as follows. From a kinetic point of view, first-order
phase transitions can be described in terms of the nu-
cleation and growth of a droplet of the stable phase in
the unstable phase. In our case, this process is impeded
by the intermediate conformational states which stabi-
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FIG. 3. Free energy F(A) as a function of average area
per molecule A corresponding to DSPC bilayers with a lateral

pressure of I = 30 dyn/cm for (a) L = 16, T = 328.04, (b)
L =24, T = 327.96, and (c) L = 44, T = 327.95.
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lize the droplets by forming interfaces which are likely to
exhibit low interfacial tension. This effect would destroy
the phase transition in a manner analogous to the case of
ternary mixtures of two immiscible fluids containing sur-
factants [20]. In our case, the intermediate states play
the role of the surfactants, except that they are thermal
excitations rather than molecules.

The results discussed so far should not be regarded as
implying that the Pink model never exhibits a phase tran-
sition. Indeed simulations of DSPC bilayers for consider-
ably lower lateral pressures show that when II = 20, the
double-well structure becomes unchanged with increas-
ing L to within numerical error. For a lateral pressure
of IT = 15 we found that the free-energy barrier does in-
deed increase with system size as is shown in Fig. 4. This
implies that II =~ 20 is close to the critical pressure and
that there is definitely a first-order phase transition for
II =15.
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FIG. 4. Free energy F(A) as a function of average area
per molecule A corresponding to DSPC bilayers with a lateral
pressure of II = 15 dyn/cm for (a) L = 10, T = 316.75, and
(b) L = 44, T = 316.59.

V. CONCLUSIONS

We have undertaken a finite-size scaling study of the
Pink model with fitted parameters corresponding to both
DPPC and DSPC bilayers using the extrapolation tech-
nique of Ferrenberg and Swendsen and the finite-size scal-
ing method of Lee and Kosterlitz for calculating the free
energy. We found that, in contrast to previous conclu-
sions, there is no phase transition at T}, in the thermo-
dynamic limit for the fitted parameters corresponding
to DPPC and DSPC bilayers, even though a first-order
phase transition is predicted by mean-field theory. How-
ever, it is important to realize that the calculations re-
ported in this paper were performed for a single mono-
layer since it is assumed in the Pink model that the two
monolayers of a bilayer are independent of each other.
Furthermore, DPPC or DSPC monolayers spread on air-
water interfaces do not exhibit phase transitions at lateral
pressures of II = 30 dyn/cm and temperatures equal to
the values of T}, used here [29]. There are therefore two
possible scenarios based on our results. The first is that
our calculations are valid for bilayers as well as monolay-
ers. The second is that, since it is difficult to distinguish
between a weakly first-order transition and an apparent
transition dominated by strong density fluctuations, it is
reasonable to examine the critical region in more detail.

We took the second scenario. One way of accessing the
critical region is to lower the effective lateral pressure II.
In fact we showed in Sec. IV that the Pink model can be
made to exhibit a first order phase transition for DPPC
by lowering IT considerably. However, the value of II re-
quired to obtain a first-order transition is too small com-
pared to the value used to fit experimental data. Another
way is to extend the Pink model of Sec. II to include
interactions which only exist in bilayers. To this pur-
pose, Zhang et al. [30,31] extended the work of this paper
by showing that either a mismatch interaction between
lipids in different conformational states due to their un-
equal interfacial lengths of hydrophobic contact [28,30] or
a weak attractive van der Waals interaction between the
tails of the acyl chains belonging to lipid molecules in dif-
ferent bilayers [31] can bring the system across a critical
point to a first-order phase transition region. Only quite
small values of the interaction constants were required to
achieve this and it causes a considerable reduction in the
lateral density fluctuations. Further extensions of this

work are discussed in [31].
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